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Abstract-ALH84001 is an igneous meteorite, an orthopyroxenite of martian origin. It contains
petrographic evidence of two shock metamorphic events, separated by thermal and chemical events. The
evidence for two shock events suggests that ALH84001 is ancient and perhaps a sample of the martian
highlands. From petrography and mineral chemistry, the history of ALH84001 must include: crystal-
lization from magma, a first shock (impact) metamorphism, thermal metamorphism, low-temperature
chemical alteration, and a second shock (impact) metamorphism. Originally, ALH84001 was igneous, an
orthopyroxene-chromite cumulate. In the first shock event, the igneous rock was cut by melt-breccia or
cataclastic veinlets, now bands of equigranular fine-grained pyroxene and other minerals (crush zones).
Intact fragments of the cumulate were fractured and strained (now converted to polygonized zones). The
subsequent thermal metamorphism (possibly related to the first shock) annealed the melt-breccia or
cataclastic veinlets to their present granoblastic texture and permitted chemical homogenization of all
mineral species present. The temperature of metamorphism was at least 875 °C, based on mineral

thermometers. Next, Mg-Fe-Ca carbonates and pyrite replaced plagioclase in both clasts and granular
bands, producing ellipsoidal carbonate globules with sub-micron scale compositional stratigraphy, repeated
identically in all globules. The second shock event produced microfault offsets of carbonate stratigraphy
and other mineral contacts, radial fractures around chromite and maskelynite, and strain birefringence in
pyroxene. Maskelynite could not have been preserved from the first shock event, because it would have

crystallized back to plagioclase. The martian source area for ALH84001 must permit this complex,
multiple impact history. Very few craters on young igneous surfaces are on or near earlier impact features.
It is more likely that ALH84001 was ejected from an old igneous unit (Hesperian or Noachian age), pocked
by numerous impact craters over its long exposure at the martian surface.

INTRODUCTION

The ALH84001 meteorite is an igneous rock, an orthopyroxene-
chromite cumulate, which has been modified by shock, thermal
metamorphism, and chemical alteration. It was originally classified
as a diogenite. But recently it has been recognized as different
from diogenites and originating on Mars (Mittlefehldt, 1994a),
based principally on oxygen isotopes. ALH84001 is unique among
martian meteorites; orthopyroxene-rich fragments are present in the
other martian meteorites only as xenoliths in the EETA79001
basalt (Steele and Smith, 1982; McSween and Jarosewich, 1983).
In addition, ALH84001 contains preterrestrial alteration materials
of magnesite-siderite-ankerite carbonates and pyrite, an assemblage
not identified in other martian meteorites (Gooding, 1992). So,
ALH84001 is critically important in providing an additional view
of igneous and chemical processes on Mars.

During examination of petrography of ALH84001, it became
apparent that there was evidence for two distinct shock events,
presumably meteorite impacts. None of the other martian samples
shows evidence for multiple shock events, as could be expected
from their young crystallization ages, -180 Ma and 1.3 Ga
(McSween, 1985; Jones, 1986). So, evidence for multiple shock
events suggested that ALH84001 could be significantly older than
the other martian meteorites, perhaps older than 3 Ga (Treiman,
1994a,b). Thus, ALH84001 may have come from an ancient
martian surface (Hesperian or Noachian age), perhaps even from
the martian highlands.

It may seem unusual to use petrography as a geochronologic
tool. In this case, the petrography of ALH84001, in the context of

martian geology and the cratering record of the inner Solar System,
does imply a great age. This constraint, albeit imprecise, is
valuable because ALH84001 will be difficult to date

radiometrically. Age methods that rely on mineral isochrons are
hampered because ALH84001 is almost monomineralic; K-Ar and
Ar-Ar methods are hampered because of the potential for excess
4°Ar from the martian atmosphere (Swindle et al., 1995) and the
inhomogeneous distribution of K (bulk abundances of 108 ppm,
Mittlefehldt, 1994b; 240 ppm, Dreibus et al., 1994; 127 + 6 ppm,
Kallemeyn and Warren, pers. comm.). Methods that rely on acid
leachates and residues (Jagoutz et al., 1994) must assume that all
minerals in ALH84001 are cogenetic and contemporaneous.

In this paper (building on Treiman, 1994a), I will present
petrographic observations and mineral chemical data
supplementing those of Mittlefehldt (1994a) and other workers to
outline the geological history of ALH84001: igneous crystal-
lization, first shock, thermal metamorphism, chemical alteration,
and second shock. The inference of two separate shock events,
separated in time by thermal metamorphism and low-temperature
chemical alteration, is a significantly different from previously
offered histories. The history of ALH84001 will then be used to
derive constraints on its crystallization age and its possible martian
sources.

PETROGRAPHY

ALH84001 is an orthopyroxenite, consisting of-95% ortho-
pyroxene, -2% chromite, -1% maskelynite, -1% carbonate, and
trace amounts of augite, apatite, olivine, and pyrite (Mittlefehldt,
1994a; Dreibus et al., 1994; Harvey and McSween, 1994; Wadhwa
and Crozaz, 1994). Augite is distinguishable from orthopyroxene
by its greater birefringence but not by average atomic number (Z)
in BSE imagery. ALH84001 contains two distinct petrographic
domains, clasts and granular bands (Figs. 1-3; Figs. la,b of
Mittlefehldt, 1994a), which are described below.
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FIG. 1. Large coherent clast; crossed polarized light; scale bar 1 mm. Grains
in shades of gray are orthopyroxene; grains in black are chromite; small area of
granular band to bottom comers. Note straight to slightly curving grain
boundaries, abundant fractures, and strain birefringence in pyroxene.

Overall, the textures and structures in ALH84001 are comparable,

but less cataclastic, than some lunar "recrystallized cataclastic

rocks" (StOffler et al., 1980) or "metamorphic cataclastic rocks"

(Ryder, 1982). Examples are 12073c, 15437 and 67955 (Ryder and

Norman, 1979; Ryder, 1982; Taylor et al., 1991).

Chemical analyses were obtained using the Cameca

CAMEBAX electron microprobe at Johnson Space Center, NASA,

Houston, Texas. Standards were well-characterized natural

minerals and synthetic metals. Analyses were run at 15 kV

accelerating voltage; beam current into a Faraday cup was 30 nA

for pyroxenes and 10 nA for carbonates. Data were reduced with

the ZAF routine (PAP) provided by Cameca. For carbonates, the

ZAF routine automatically included 1 CO 2 per divalent cation

equivalent.

Clasts

The clasts in ALH84001 are coherent fragments bounded by

fine-grained granular bands. Clasts are up a few cm across and

consist of orthopyroxene to 6 mm across, chromite to 2 nun across,

and other grains to 0.5 mm across (Fig. 1; Berkley and Boynton,

1992; Mittlefehldt, 1994a). Mineral proportions in the clasts

appear identical to those of the whole rock. In the clasts,

ii_:::.

FIO. 2. Granular band (crush zone of Mittlefehldt, 1994a); crossed polarized
light; scale bar - 100 ,um. Flaser texture seen as elongated ribbons of
orthopyroxene-rich rock in granular band.

FIG. 3. Granular band with showing chromite (black) drawn out into wavy
stringer. Plane polarized light; scale bar = 100 ,um. Elliptical carbonate
globule (C) in clast within granular band.

orthopyroxenes are anhedral and without crystallographically

controlled boundaries, except where they abut maskelynite.

Pyroxene-pyroxene grain boundaries are straight to slightly curved.

No exsolution features were noted in orthopyroxene (MacPherson,

1985). Chromite grains, equant and euhedral-subhedral, occur

within and between orthopyroxenes. Augite, maskelynite, and

apatite are restricted to angular regions interstitial to

orthopyroxenes. The augite grains contain lamellar or lenticular

structure visible as differences in refractive index and birefringence

but not as atomic number (Z) contrast in BSE imagery. Carbonate

and pyrite are concentrated in and near maskelynite. In

maskelynite, carbonates form hemispherical to ellipsoidal globules

with complex concentric zoning that is sharp on a sub-micron scale

(Fig. 4; Fig. ld of Mittlefehldt, 1994a). All carbonate globules in

the clasts appear to have the same concentric sequence of layers

and compositions: a central zone of ankerite, grading outward to

ferroan magnesite (breunnerite) and thence to magnesite; an Fe-

rich zone (bright in BSE imagery); a second magnesite zone; and a

second Fe-rich zone (Fig. 4; Fig. 1 ofMittlefehldt, 1994a). Isolated

N

FIG. 4. Carbonate globules in a clast; backscattered electron image; scale bar =
100 lzm Rounded globules of siderite-magnesite-ankerite solid solutions with
intricate chemical zoning (bright = Fe-rich, dark = Mg-rich) replace plagioclase
(P, now maskelynite, medium gray). Surrounding cracked light-gray grains are
orthopyroxene; white grains are pyrite and chromite. Carbonate globule
extends from maskelynite-rich interstitial area into granular band (larger
arrows). Layering in carbonate globules transected by microfaults (smaller
arrows).
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patches of carbonate are present within orthopyroxene and along

fractures. Pyrite occurs as discrete euhedra, -10 ¢tm across.

The clasts show many deformation features. The

orthopyroxenes are extensively and pervasively cracked along

cleavage directions (Fig. 1). Some cracks are wavy, and the grains

and their cracks commonly are bent near granular bands.

Orthopyroxene is commonly polygonized (converted to smaller

grains), both where the fractures bend and along otherwise

unmarked planes through the grains. Optical extinction in the

pyroxenes is rarely sharp but is commonly irregular or undulose

within grains. Microfaults in the clasts displace grain boundaries

between silicate and oxide minerals (Fig. 1c of Mittlefehldt, 1994a)

and displace layering in the carbonate globules (Fig. 4; Fig. ld of

Mittlefehldt, 1994a). Short fractures commonly radiate from

chromite crystals and maskelynite patches in and among pyroxenes

(Fig. la of Berkley and Boynton, 1992; Fig. lc of Mittlefehldt,

1994a). Maskelynites contain a few fractures (Fig. 2).

Compositions of minerals in the clasts, except carbonates, are

nearly homogeneous in major and trace-element compositions

(Berkley and Boynton, 1992; Mittlefehldt, 1994a; Papike et al.,

1994; Harvey and McSween, 1994; Romanek et al., 1994a,b;

Wadhwa and Crozaz, 1994). Additional analyses of adjacent ortho-

pyroxene and augite grains are given in Table 1. Carbonate compo-

sitions span a range from nearly pure magnesite, Cc4Mg95Sdl, to

magnesite-siderite solid solution, Cc16Mg48Sd36, to ankeritic,

Cc2sMg44Sd31 (Mittlefehldt, 1994a; Romanek et al., 1994a,b).

TABLE 1. Average compositions of adjacent
augite and orthopyroxene in a clast.

Augite Orthopyroxene
15 analyses 8 analyses

SiO2 53.72 +0.44 54.41 ±0.20
TiO2 0.30 ±0.04 0.18 ±0.03
AlzO3 0.56 ±0.22 0.56 ±0.06
Cr203 0.49 ±0.08 0.29 ±0.14
FeO 7.48 ±0.16 17.50 ±0.11
NiO 0.01 ±0.01 0.01 ±0.01
MnO 0.27 ± 0.02 0.51 ± 0.02

MgO 15.94 ± 0.21 25.59 ± 0.22
CaO 21.01 ± 0.41 1.52 ± 0.11
Na20 0.37 ± 0.03 0.02 ± 0.01
K20 0.01 ±0.01 0.01 ±0.005

Sum 100.16 ± 0.63 100.60 ± 0.31

Cations to 4 total

Si 1.981 ± 0.005 1.975 ± 0.003
Ti 0.008 ± 0.001 0.005 ± 0.001
AI 0.024 ± 0.009 0.024 ± 0.002

Cr 0.014 ± 0.002 0.009 ± 0.004
Fe 0.231 ±0.004 0.531 ±0.004
Ni 0.000 ± 0.000 0.000 ± 0.000
Mn 0.009 ± 0.001 0.016 ±0.001

Mg 0.876 ± 0.009 1.384 ± 0.009
Ca 0.830 ± 0.017 0.059 ± 0.004
Na 0.026 ± 0.002 0.002 ± 0.001
K 0.000 ± 0.000 0.000 ± 0.000

Molecular Endmembers
Wo 42.5 ± 0.6 3.0 ± 0.2
En 45.2 ±0.6 70.1 ±0.3
Fs 11.9 ± 0.2 26.9 ± 0.2

Uncertainty shown is one standard deviation of
population (1 a).

Granular Bands

ALH84001's clasts are separated by swaths (to a few mm wide)

of fine-grained (10-30 /tin diameter), granular textured ortho-

pyroxene, chromite and maskelynite, apparently in the same

proportions as the bulk rock (Figs. 2, 3). These swaths are called

granular bands here and are the crush zones of Mittlefehldt

(1994a). The granular bands consist of anhedral to subhedral

orthopyroxene crystals (down to 10/tin across) and anhedral

chromite grains (20-0.1 /tin across) with interstitial maskelynite

and carbonates (Fig. 5). Many areas appear as unfoliated

aggregates of even-sized grains (Fig. la, b of Mittlefehldt, 1994a),

a granulitic texture in which pyroxene grains are commonly

somewhat elongate along the cleavage direction butlhave random

orientations and intergranular angles approachingI20 ° (decussate

texture: Spry, 1969). In other areas, larger fragments (porphyro-

clasts) of orthopyroxenite sit in a fine-grained matrix, a classic

"mortar" texture (Plate XXVIIIc of Spry, 1969). Some bands

contain elongate fragments of clast orthopyroxenite (Fig. 2) in an

augen or ribbon structure (Spry, 1969). Others contain wavy or

swirled stringers of chromite (Fig. 3), sometimes continuous with

(or traceable to) chromites in clasts. Texturally, the bands could be

called recrystallized mylonite or pseudotachylite (Spry, 1969).

The granular bands show some of the deformation features of

the clasts, notably cracks radiating from the larger chromite and

maskelynite grains (Fig. 6; cracks displace orthopyroxene grains in

ii:_::" ' .... " " : i?

.:::?i_

:_: "_i_i_ii!ii

A :x:: : :>2A: A:>::AA ¸ : :A>:>>:+>>>>

FIG. 5. Compact intergranular texture in granular band, on le_, compared to
elast texture, on right. Crossed-polarized light (5a) and back-scattered electron
image (5b) of same area; scale bar =100/zm Mineral grains in granular band
have a granulitic-polygonal texture (straight grain-boundaries, similar sized
grains). There is no evidence of significant void space, broken fragments or
irregular grain boundaries.
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FIG. 6. Radial cracks around maskelynite in granular band; partially crossed
polarized light; scale bar - 100 ,um. Cracks cut and offset grains in granular
band (arrows).

the granular band), and irregular or undulose optical extinction.

However, the abundant cracks in the clasts do not extend into the

granular bands but stop at the clast boundaries. Nor is

polygonization observed, although it might not be apparent as the

grain size of the granular bands is comparable to that formed by

polygonization of clasts. Microfaults in the deformed bands are

neither common nor obvious, but a few structures displace

pyroxene and carbonate boundaries.

Carbonate is common in the granular bands but does not form

coherent globules as in the clasts (Fig. 4). Rather, carbonate in the

bands appears in thin section as patches of discrete grains among

and between pyroxene grains; the patch of Fig. 7 is tnfly typical,

not exemplary (it was chosen for photography and later study

because of its proximity to the thin section edge). The carbonate-

rich patches are not randomly dispersed in the granular bands, but

they appear as circular to elliptical areas enriched in carbonate and

lacking maskelynite. The microstratigraphy in the clast carbonate

globules is repeated in these rounde d Patches, w!th each individual

FIG. 7. Carbonate-rich patch in granular band; backscattered electron image;
scale bar - 10 ,urn. Carbonate grades from light gray at center of globule
(ankerite) through dark-gray or black (magnesite), with bright Fe-rich layers
(arrows). Medium gray equant grains are pyroxene and white grains are
chromite (vis., Fig. 5). The Fe-rich bright layer (arrows) forms a "dashed
circle," suggesting that the carbonate grains in the globule are physically
continuous outside the section plane. As a whole, the carbonate patch shows a
concentric stratigraphy identical to those of carbonates in clasts (Fig. 2),
although piecewise in separated carbonate grains.

carbonate grain displaying a portion of the stratigraphic sequence.

Stratigraphic marker horizons, like the bright layer of Fig. 7, can be

traced from one carbonate grain to another, across intervening

pyroxenes, to form "dashed circles." This suggests that carbonate

grains in the granular bands are actually interconnected in three

dimensions (outside the thin-section plane), and that the three-

dimensional forms of the carbonate-rich areas are porous

ellipsoidal globules. Essentially all carbonate in the granular bands

is present in such round patches.

Compositions of minerals in the granular bands, except

carbonates, are nearly homogeneous in major and trace-element

compositions (Mittlefehldt, 1994a). Notably, chromites in the

granular bands have a much more restricted compositional range

than chromites in the clasts (Fig. 3 of Mittlefehldt, 1994a).

Carbonate compositions in the granular bands span essentially the

same range as in the clasts: nearly pure magnesite, Cc4Mg94Sd2, to

magnesite-siderite solid solution, Cc15Mg48Sd37 , to ankerite,

Cc42Mg39Sdl9 (Table 2; Mittlefehldt, 1994a; Romanek et al.,

1994a,b).

GEOLOGICAL HISTORY

From these and literature data on ALH84001, the most

significant events in its history were: crystallization from a magma,
a first shock metamorphism, thermal metamorphism, low-

temperature chemical alteration, and a second shock

metamorphism. This history differs from that of Mittlefehldt

(1994a) in having two shock events rather than one, and one

alteration event at low temperature rather than two at high

temperature. The most crucial observation here is that all the

carbonate globules in ALH84001, in clasts or granular bands, are

essentially identical in structure, internal stratigraphies, and

compositions (Figs. 4, 7; Table 2; Figs. ld and 5 of Mittlefehldt,

1994a). It seems highly unlikely that two distinct episodes of

layering in the carbonate globules and their range of carbonate

TABLE 2. Extreme carbonate compositions
in granular bands.

Mg-richest Fe-richest Ca-richest

Si02 0.36 0.35 0.09
FeO 1.29 25.71 15.52
MnO 0.25 2.02 3.21

MgO 44.22 18.96 15.52
Can 2.56 8.34 23.05

SO3 • 0.05 0.03 0.03
COz 51.25 44.26 45.32

Sum 99.98 99.68 100.75

Cations to 2 total
Si 0.005 0.006 0.001
Fe 0.015 0.355 0.183
Mn 0.003 0.029 0.045

Mg 0.940 0.466 0.373
Ca 0.039 0.147 0.399
S 0.000 0.000 0.000
C 0.998 0.997 0.999

Molecular Endmembers
Cc 3.9 15.2 41.8
Mg 94.5 48.2 39.1
Sd 1.6 36.6 19.1

* CO2 calculated in 1: 1 stoichiometry with atomic
Fe + Mn + Mg + Ca.
Molecular endmembers are: CC, calcite, CaC03;

Mg, magnesite, MgC03; and Sd, siderite, CaC03.
Calculation ignores Mn, S, and Si.
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alterationcouldyieldsuchsimilarproducts.Further,thefine-scale
compositionsseeminconsistentwithahigh-temperatureorigin.If
ALH84001experiencedoneepisodeofalteration,itmusthaveseen
twoshockevents,becausesomeofitsshockeffectsareolderthan
thealterationmaterialsandsomeareyounger.Featuresin
ALH84001attributabletothefirst(oider)shockeventinclude:the
granularbandsrepresentingshockbrecciaor melt-breccia;
pervasivecrackingof pyroxene;and polygonizedpyroxene,
representingstressresidualaftertheshock.Featuresattributable
to the second(younger)shockeventinclude: formationof
maskelynite;microfaultoffsetscuttingsilicates,oxides,and
carbonateglobules;radialcracksaroundmaskelyniteandchromite;
andstressrepresentedasirregularextinctionpositioninpyroxene.
Original Rock

Originally, ALH84001 was an igneous cmnulate rock of

orthopyroxene and chromite with interstitial plagioclase, augite,

apatite, olivine, and possibly silica (Mittlefehldt, 1994a; Harvey

and McSween, 1994; Fig. 1). This rock is now represented by the

clasts as more-or-less disturbed fragments of an apparently homo-

geneous lithology. It is impossible to tell if mineral grains in the

original (pre-shock) rock retained igneous zoning patterns, or had

been chemically homogenized near to the level they are now: nearly

constant compositions of orthopyroxene and chromite (Table 1;

Mittlefehldt, 1994a). Compositions of maskelynite glass are more

varied, which may reflect (in part) variations in the proportions of

its parent phases (plagioclase + silica (+ alkali feldspar?);

Mittlefehldt, 1994a). ALH84001 appears to be monomict, because

all its clasts appear to be from the same orthopyroxene-chromite

cmnulate, and there is no evidence that the granular bands contain

any material besides that represented by the clasts.

First Shock Metamorphism

ALH84001 is criss-crossed by granular bands (crush zones of

Mittlefehldt, 1994a), which are interpreted as products of a shock

metamorphism, presumably from a meteorite impact (Fig. la,b and

text of Mittlefehldt, 1994a). The structures of the granular bands

are typical of dynamic metamorphism (high strain rates), which can

occur during rapid tectonic motions or during shock (Spry, 1969).

Characteristic structures of dynamic metamorphism include

fragments of host rock (clasts) in a fine-grained matrix of the same

material (Figs. 1, 2; Fig. la of Mittlefehldt, 1994a), ribbon

structures (Fig. 2), and fluidal structures (swirling strings of

chromite grains, Fig. 3). From ALH84001 alone, it is difficult to

determine whether this dynamic metamorphism reflects tectonics or

shock, although the random orientations of the granular bands

suggest going against a tectonic origin (Fig. l a of Mittlefehldt,

1994a). From the perspective of a martian origin, shock is far more

likely than tectonic deformation (abundances of impact craters vs.

tectonic features; Tanaka et al., 1992; Branerdt et al., 1992; Schulz

and Tanaka, 1994), and I infer that this metamorphism reflects
shock from a meteorite impact.

The granular bands were likely to have been melt-breccia

dikelets originally, although they might have been crystalline

cataclasites. Melt-breccias, fragmental breccias with glassy

matrices, are common in highly shocked materials, stages $5 and

$6 of St6ffler et al. (1991). A melt-breccia origin is consistent

with limited differential movement within and across granular

bands, and with the wavy and swirly stringers of chromite (Fig, 3);

similar wavy structure in a melt-breccia dike (albeit not in chromite

but in opaque shock-melt) is shown in Fig. 17 of St6ffler et al.

(1991). If the granular bands had been wholly molten, they would

probably show remnants of crystals grown from the melt, like the

dendritic olivine and pyroxene crystals in shock-melt dikelets in

ALHA77005 and LEW88516 (Treiman et al., 1994). If the bands

had been wholly crystalline, like fault gouge, it is not obvious that

the wavy and swirly stringers of chromite could have been

produced or preserved.

Other deformation featares attributable to this first shock event

are pervasive cracking along cleavage of the clast pyroxenes,

deformation of those cracks from straight to wavy, bending of the

cracks at the edges of granular bands, and probably intracrystalline

stress that was relieved to form the polygonized areas and planes.

There is no evidence one way or the other that the shock event

affected the compositions of ALH84001 and its constituent

minerals. As noted above, the granular bands have the same

mineralogy, mineral proportions, and (for the most part) mineral

compositions as the clasts. The extreme homogeneity of chromite

compositions in the granular bands (compared to those in clasts)

could be ascribed to high temperature during their formation. It

could also be ascribed to the subsequent thermal event and the

small grain size in the granular bands.

In this first impact event, ALH84001 was not likely to have

been part of the ejecta. More likely, it remained part of the

shocked basement rock. Ejecta breccias and intracrater breccias

are usually polymict, containing clasts that are compositionally

distinct from the breccia matrix, or containing a variety of clasts

(St6ffler et al., 1980; H6rz et al., 1991). However, ALH84001 is

likely monomict, as minerals in the granular bands and their

proportions are identical to those of the clasts, suggesting that this

shock event introduced little or no exogenous material. Monomict

breccias, structurally comparable to ALH84001, are usually

interpreted as forming in the bedrock beneath an impact crater

(H6rz et al., 1991 ). It seems reasonable to infer a similar origin for
ALH84001.

Thermal Metamorphism: Textural AnneaLing
and Chemical Equilibration

After the first shock, ALH84001 experienced thermal

metamorphism of sufficient temperature and time to anneal the

granular bands to their current granoblastic-polygonal texture (Fig,

5). The nearly homogeneous mineral compositions throughout the

rock may have been a result of this event or may reflect post-

igneous cooling. However, compositions of chromites in the

granular bands are even more restricted than in the clasts

(Mittlefehldt, 1994a), which might suggest speedier chemical

equilibration among bands' small mineral grains. Only the altera-

tion mineral assemblage, carbonates + pyrite, was unaffected by

thermal metamorphism.

Thermal metamorphism is required to explain intergranular

textures within the granular bands. If the bands are correctly

interpreted as originally being cataclastic or melt-breccia zones,

they would have had textures including broken angular grains,

irregular grain boundaries, possibly inter-grain void spaces, and

glass. However, the granular bands now consist of larger fragments

in a granoblastic polygonal matrix, as shown in Fig. 5. The matrix

grains are not irregular or broken, no void spaces are present, and

there is no glass (save maskelynite after plagioclase). This inferred

transformation from cataclastic or melt breccia textured pyroxenite

to granoblastic polygonal textured pyroxenite would seem to
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requirethetime-at-high-temperatureofametamorphicevent.The
ALH84001clastsmightshowlittle texturalevidenceof this
metamorphism,astheirtexturesresumablyalreadyreflectedthe
hightemperaturesof igneouscrystallizationandpost-igneous
cooling.

Themaximummetamorphictemperaturewasatleast875°C,

as given by mineral geothermometers. The composition of augite

adjacent to orthopyroxene (Table 1) yields an equilibration

temperature of 875 °C using the Davidson and Lindsley (1985)

two-pyroxene thermometer. No correction to their calibration is

needed as the ALH84001 augite contains almost no non-quad

components. The Fe-Mg distribution between ALH84001 olivine

(34.5% Fa; Harvey and McSween, 1994) and augite (Table 1)

suggest equilibration at 1040 + 180 °C (Kawasaki and Ito, 1994);

Fe-Mg distribution between olivine and orthopyroxene of these

compositions is not sensitive to temperature (von Seckendorf and

O_eill, 1993). Fe-Mg distribution between ALH84001 chromite

and olivine (Mittlefehldt, 1994a; Harvey and McSween, 1994)

suggests equilibration at -900 °C (Sack and Ghiorso, 1991). The

Fe-Mg distribution between chromite and orthopyroxene yields

equilibration temperatures of 635-710 °C (depending on chromite

composition used) following the calibration of Mukherjee et al.

(1990). Mittlefehldt (1994c) noted that this calibration gave

temperatures 0-200 °C below two-pyroxene temperatures. All of

these geothermometers give "closure" temperatures for chemical

equilibration among their minerals, not peak metamorphic

temperatures. The peak temperature experienced by ALH84001

could have been much higher, but its chemical signature would

have been erased by equilibration to the closure temperature.

Mittlefehldt (1994a) inferred a higher equilibration

temperature, -1050 °C, using orthopyroxene composition alone in

the two-pyroxene thermometer of Lindsley and Anderson (1983).

This temperature is quite uncertain because the composition of

orthopyroxene in equilibrium with augite changes little with

changing temperature (Fig. 6 of Lindsley and Anderson, 1983);

thus, small inaccuracies in composition, location of the pyroxene

miscibility gap, estimation of ferric iron content, or correction for

non-quad pyroxene components can shift apparent equilibrium

temperatures by hundreds of degrees. Compositions of augite in

equilibrium with orthopyroxene change much more rapidly with

temperature, and so yield much more precise temperatures. The

augite of Table 1 suggests equilibration at -850 °C in the Lindsley

and Andersen (1983) thermometer, compared to 875 °C in the

formulation of Davidson and Lindsley (1985). Davidson and

Lindsley (1985) noted that their thermometer tended to give

temperatures -25 °C higher than the Lindsley and Anderson (1983)
thermometer.

The thermal metamorphism may have been part of the first

shock metamorphism; heat generated by a meteorite impact

dissipated slowly enough to permit extensive chemical equili-

bration. Or, the thermal metamorphism might have been a separate

event, such as a later impact or a nearby igneous intrusion. In any

case, the thermal metamorphism was dry, because ALH84001

contains no hydrous minerals (e.g., amphibole, chlorite) that might

have formed during cooling (retrograde metamorphism) in a water-
rich environment.

Alteration

After thermal metamorphism, ALH84001 experienced a single
episode of low-temperature chemical alteration in which

plagioclase (silica) throughout the rock was partially replaced by

Mg-Fe-Ca carbonates in globular concentric structures (Figs. 4, 7;

Fig. ld of Mittlefehldt, 1994a). No silicate alteration phases or

hydrous non-silicates have been recognized. Mittlefehldt (1994a)

inferred that ALH84001 experienced two episodes of alteration at

high temperature: early alteration represented by the strongly

zoned carbonate globules in the clasts; and late alteration

represented by carbonates in the granular bands. But petrographic

and chemical evidence suggests that the alteration of ALH84001

can be ascribed to a single episode, after thermal metamorphism,

and at low temperature.

The similarity and near-identity of carbonate-rich globules in

granular bands and in clasts suggests that all formed in a single

episode. Carbonates in clasts and in granular bands both occur in

ellipsoidal shapes, "globules" or "patches" (Figs. 4, 7). The compo-

sitions of carbonates in clasts and in granular bands have

essentially identical ranges (Cc4Mg95Sdl, Cc16Mg48Sd36 '

Cc25Mg44Sd31 and Cc4Mg94Sd2, Cc15Mg48Sd37 ' Cc42Mg39Sd19

respectively; Table 2; Mittlefehldt, 1994a; Romanek et al, 1994a).

Carbonates in clasts and in granular bands both have identical

concentric layering, or stratigraphy (e.g., Figs. 4, 7). Carbonate in

the granular bands is essentially all associated with these rounded

patches, suggesting that little if any carbonate was present before

formation of the granular bands. Some carbonate globules straddle

boundaries between clasts and granular bands, with stratigraphic

layers traceable from clast into granular band (Fig. 4). So, a single

episode of alteration is sufficient to explain the carbonates in

ALH84001; no available evidence requires two episodes. Invoking

Occam's razor, I will proceed assuming a single episode of aqueous
alteration.

The carbonate must have been deposited after the gramflar

bands had annealed, because the concentric stratigraphy of the

carbonate globules is superimposed on the equilibrated granular

texture of the bands (Fig. 7). Since all the carbonate in ALH84001

formed in a single episode (see above), that episode post-dated

annealing, and therefore the thermal metamorphism described

above. Deformation structures that cut the carbonate globules can

be ascribed to a second shock metamorphism, see below.

Finally, the stratigraphy and compositions of the carbonate

globules suggest that they formed at low temperature, not high

temperature as suggested by Mittlefehldt (1994a) and Harvey and

McSween (1994). The sub-micron scale chemical zoning visible in

the clast carbonates (Fig. 4; Fig. ld of Mittlefehldt, 1994a) could

not have persisted at high or sub-magmatic temperatures (-700 °C:
Mittlefehldt, 1994a; -550 ° C: Harvey and McSween, 1994). For

instance, experiments involving submicron grains of Fe-Mg

carbonates in flux effectively homogenize in days at 500 °C and in

a month at 350 °C (Rosenberg, 1963, 1967). Clearly, the

ALH84001 carbonates did not experience such high temperatures

as they are strongly zoned (Figs. 4, 7; Table 2; Figs. l d, 5 of

Mittlefehldt, 1994a). Comparable chemical heterogeneity is pre-

served in low-temperature carbonates on Earth (e.g., Mozely,

1989). The actual temperature of carbonate formation is poorly

constrained, with lower temperature estimates ranging from 0 to

320 °C (Grady et al., 1994; Romanek et al., 1994a,b). All but the

lowest temperatures in this range seem to be inconsistent with the

absence of silicate alteration minerals like chlorite and clays (e.g.,

Gooding, 1986; Gislason et al., 1993; Noack et al., 1993).

However, the presence of magnesite rather than the hydrous Mg

carbonates nesquehonite [Mg(HCO3)(OH).2H20] and hydro-
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